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1.0 INTRODUCTION
The stiffened shell is perhaps the most utilized structure

in industry today. Since the early 1930's, the aerospace and
aircraft industry has used thls class of shell to its fullest
extent. However, as the shell structure 1s made thinner and
lighter for a given loading, 1t becomes prone to a catastrophic
collapse known as shell instability. The magnitude of the load
that causes the shell to become unstable 1is significantly
affected by the size and geometry of 1imperfections iIn the initial
shape of the shell. Consequently, 1n order to ensure an effi-
clent design, considerable research has been conducted in the
United States and overseas to mure fully understand the complex
behavior of these structures.

The development of an understanding of the behavior of shell
structures had its start around the turn of the century. Surveys
by Fnggelog*, Langhaarlsg, Nowinsk1224, Naghdi216 and
Nash22o’221 clearly demonstrate that even after more than three
quarters of a century of study, there is a continued interest in
shell analysis and, in particular, elastic shell stability
analysis. In fact, the interest has been so great that the total
number of papers written on the subJect exceeds six thousand, of
which nearly one thousand were written in the last decade.

The 1interest in shell analysis has not only bheen associated
with the aerospace industry, but also iIn the marine and energy
fields, Jjust to mention a few. For example, the Subcommittee on
Shells for the Pressure Vessel Research Committee of the Welding
Research Counclil has supported several studies for the analysis
of shell structures. Also, a chronicle of support of the Pres-
sure Vessel and Pliplng Division of the ASME has been collected in

20,21

several ASME documents The author has also presented a

ltmited survey of the lmperfection sensitivity and postbuckling

*Superscript numbers denote references found at end of
report.
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of shells as part of the Pressure Vessel and Piping Decade of
Progress of 198279. A more in-depth review of buckling of shells
as a general category has been glven by Bushnell67’68.

After all that has been written on the subject, one might
assume that the subject matter has been amply covered. Some
researchers have taken this attitude, but many design/analyst
englneers find that they must still rely upon ingenuity and engi-
neering instincts when evaluating the stability characteristics
of shell structures which are subject to a specific complex load-
ing condition. Perhaps the present state-of-the-art is too math-
ematical or abstract for the practicing engineer. Perhaps the
methods of analysis are incomplete with respect to the under-
standing of the instability of shells. This is more eloquently
presented by Koiter'l74 in his discussion of Truesdell and Noll's
306

remarks on the purpose of the elastic stability literature.
Koiter states:

"Our first aim, to show the real purpose of existing theo-
ries and current research in elastic stability, is by far our
casiest task. Structural stability is in fact one of the most
important criteria in the design of many engilneering structures.
Dur knowledge in this field is admittedly far from complete, in
particular for structures 1in which inelastic behaviour or dynamic
loading conditions are essential features, but the theory of

elastic stability, however 1incomplete it may be, constitutes an

indispensable tool in achleving properly designed and efficient
structures, capable of withstanding their service loads without
catastrophic failures. It 1is quite true, of course, that many
lnvestigations of elastlc stabllity lean heavily on more or less
crude approximations and on heuristic physical arguments, not by
cholce, however, but only due to the absence of a rigorous theory
which Is at the same time capable of a reasonably simple applica-
tion to the problem at hand. Elastic stability shares the fate
of all englineering science that it cannot afford to await the
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development of fully rigorous mathematical theories before it

deligns to consider the solution of stability problems arising in
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engineering practice. 1Its servant's role in engineering implies
that it must try and solve these problems, if possible by rigor-

ous analysis, 1f necessary by hook or by crook. A rough estimate
today may be worth more than an accurate approximation a month

from now."
At present, the dilemma that the practicing engineer faces
is that he has only two choices in examining the stability of

imperfect shells -- he must use either (1) complex computer pro-
grams wnich are based upon certain theories and therefore have
certain limitations -- some specified, others not; or (2) simpli-

fied equations modified by semi-empirical (graphical) data
developed from experiments that may or may not have been ade-
nquately controlled. Without a complete understanding of the
subject matter, the engineer could easily misuse these computer
programs and/or data, and misleading conclusions could be drawn.
The dilemma is further aggravated because modern technology
demands that more efficlent structures be designed, sometimes
beyond the imposed limitations of presently accepted data or
computational technlques.

It is therefore the purpose of this review to 1llustrate the
basis of the accepted theories of the imperfection sensltivity of
shells and also to suggest works that may be helpful to the
practicing engineer in gaining additional insight. Since the
previously mentioned surveys give a rather broad description and
~hronicle of shell instabillity studies, it would appear to be
appropriate for thils review to present material which permits the
practicing engineer to focus on the complexities involved in the
so-called elementary stabllity theories and understand their
Limitations. 1In this way he may bridge the gap between hls needs
and those accepted theories. Because of the enormous volume of
papers on Jjust one subject, 1t may require the engineer to review
several papers to galin the required understanding of a single
concept. A summary 1s provided to aid in this evaluation. The
review must necessarlly present abbreviated forms of some rather

cumbersome mathematlical expressions. Thelr appearance is by no
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means intended to be complete, but rather a reminder of their

complexity.

2.0 FUNDAMENTAL PRINCIPLES AND THEIR HISTORICAL DEVELOPMENT
2.1 Basic Concepts
The foundation of the analysilis of thin shells of revolution

223 presented

was developed more than a century ago and Novozhilov
a rather comprehensive description of this development. The
basic equations of equilibrium were developed by Aron29 in 1874
and Lovel9® in 1888. 1In these early developments 1t was shown
that the main feature that distingulshes thin shell theory from
the three-dimensional theory of elasticlity 1s that the shell can
be regarded as a two-dimensional surface. All fundamental vari-
ables are therefore dependent on two orthogonal curvilinear
coordinates, ;1 and %o which defline a point on a middle or
reference surface. The description of this reference surface
obeys the relatlionships of differential geometry. The governlng
equations can be greatly simplified if the reference surface 1is
restricted to a surface of revolution. The key parameters that
Jdescribe the shell of revolution's geometry are its two principal
radii of curvature, R; and Rp. For practical shell applications,

the coordinate system ;1,c is usually oriented along the princi-

2
pal curvature directions. For a shell of revolution, the in-

plane coordinates are in the meridional, where d;l = R1d¢, and

the circumferential, d£2 = R2d9, directions. The third ortho-

gonal coordinate 1is c3 direction and is in the direction of the
outward normal.

The development of the straln-displacement relations for a
general shell in terms of the orthogonal curvilinear coordinates
is given by Love. These equations, as well as the remaining
fundamental equations of thin shells, are presented by Krausle.
in his presentation, the accepted definitions are used to illus-
trate Relssner's version of the Love theory. Four representive

shell theories are discussed which preserve Love's origilnal

assumptions,

-“.

TavLvLeoTy




The measure of deformation of the reference surface can be

expressed through a set of strains and curvatures which are given
in terms of the displacement vector of the middle surface and the
geometric parameters of the surface. The reference surface
strain and curvature create stresses throughout the shell, TInte-
grating the stresses and their first moments about the reference
surface give the 1in-plane or membrane stress resultants and the
bending stress resultants. Consistent with the theory of Love's
first approximation are the following four assumptions:

(1) The thickness of the shell, t, is small such that
t/R) and t/Rp << 1.

(2) The stralns and displacements are small so that second
order terms and higher may be neglected.

(3) The extenslional stresses normal to the middle surface
may be consldered small with respect to the other
stress components.

(4) Normals to the reference surface prior to deformation
remain normal after deformation and have no extension.

The displacement of a point on the reference surface of the

shell is expressed by u, v and w in the Cl’ and g, directinns,

g
2 3
respectively; and the dlsplacement of a point of a distance, Z,

away from the reference surface can be given by:

>

= +
u¢ u Z B¢
uy =V + Z B¢ (1)
W= oW

where ﬁ¢ and Be are the reference rotation about the surface

roordinates c2 and ;1,
rotation (twist, ¢) about the normal coordinate as well.

respectively. Some theories permit local

In order to fully understand the Implication of Love's first

approximation, the equations of equllibrium and the strain-
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displacement equations must be considered in conjunction with the

relationship between the stresses and strains, such as Hooke's
Law for a linear elastic material. Love's first assumption
defines what is meant by thin. Although a precise definitlon is
not available, usually a radius to thickness ratio R/t > 10 has
been accepted by many. The second assumption assures linearilty
of the governing differential equations. The third and fourth
assumptions require the normal stress and strain and the
transverse shear stresses to be negligible. Usually, for homo-
geneous, orthotropic materials, there are three mutually per-
pendicular planes of elastic symmetry, and these planes also
usually lie in the planes of principal curvature. Thus, the
theories are applicable to orthotropic shells of revolution.

Hildebrand, Reissner and Thomas131

expand on this theme and
give a more complete description of the higher order approximate
theories. Several other methods have been presented by a number
nf investigators in an attempt to improve the analysis of shells.
An excellent discussion of the various derivations of the govern-
ing equations, thelr similarities and thelr differences, 1is given

168 192

by Koga and Endo , and by Leissa Over fourteen different

theories are examined by Leissa. These include Novozhilov, Love,
Timoshenko3ou, Byrne70, Flaggelos, Goldenveizerl20, Lur'ye198,
Heissner2uo, Vlasov313, Sanders25u, Donnell96, and Mushtar121”.
In Leissa's comparison, he shows that the usual result when
adopting any of these theories 1s that inconsistent
approximations are required in order to make any significant
improvements over Love's first approximation.

With the fundamental linear shell equations addressed, at-
tempts were made between 1900 and 1914 by Lorenz19u,
von Mises3l7, Southwe11281 and Timoshenko303 to examine the crit-

1cal buckling load of a thin circular cylindrical shell under

F: axlal compression. The linear equations governing the buckling

"_! of a cylinder in a membrane prestressed state of compression due

N to an axial load, P, can be given in the form:

b
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'\ El(u,v,w) =0

"™ T = 2

8 Lz(u,v,w) 0 (2)

= Dvuw + —C(v + w + VRu ) = - w

- R2 , 0 b X 2%R 7, xXx

Q where Ej and E, are equilibrium equations 1in the 9] and %5 direc-

:: tions in terms of u, v, and w; R 1s the radius of the cylinder, x

tf is the meridional coordinate (synonymous with the ¢ direction),

. 8 1s the circumferential independent variable, and commas denote

b partial differentiation. The variables C and D are given by:

3 Et

- C =

) l1-v

) D = Et3

- = T30

- 12(1-v7)

. where E is the modulus of elasticity, v is Poisson's ratio. Also

L the biharmonic operator 1s defined as:

- 4y 2 1

- VW S W exxx T g2 ¥ xxee T R ¥, 0600 (3)
These three governing equations described in Eq. (2) constitute a

51 linear eigenvalue problem, and the eigenvalue 1s related to P.

b} As P is 1increased from zero, the cylinder will undergo an end

k shortening linearly related to P and accompanied by a uniform

] radlal expansion due to the Poisson effects. When the minimum

’f elgenvalue 1s reached, the cylinder displacement pattern will be

> at a bifurcation point. For larger values of P, the shell could

2 continue the same deformation pattern as before, or it could

(] exhibit a non-uniform radial buckling displacement that could be

ﬁ quite large. The linear elgenvalue formulation does not allow

ﬁ any study of the post-buckling behavior. The only information it

% provides 1s for minimum bifurcation buckling load and the

¢ associated buckling mode shape.

B When experimental results became available it was noted

:& that, although good agreement could be attained for structures

e 7
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comprised of columns and plates, poor correlatlions between the

analytical and experimental buckling loads were obtained for the
thin-walled circular cylindrical she112u5. In attempts to recon-
cile the discrepancy between experiment and theory for cylin-

drical shells, Donnell?’ and Flugge107.108

suggested certain
boundary condition restraints at the onset of buckling, but they
could not account for the differences in the predicted and
observed buckled shapes. Donnell's treatment in 1931197 suggested
the employment of a large deflection theory, which included an
initial geometric imperfection in the shape of the cylinder. The
imperfection, denoted by w, changes Eq. (2) into:

N

C_ _ _ _P =
DV'w + -2 (V,e + W+ vRu,x) = - 3. (w,xx + w,xx) (4)

This new formulation is not an eigenvalue problem, and hence the
cylinder will begin to deform in a general way, with bending, as
soon as P is 1increased from zero., The 1imperfection creates a
pseudo load. Von Karman and Tsien31u’3l6 demonstrated that
curved shells can develop buckled deflections that are different
from the original buckling mode with an imperfection amplitude
that 1s several times the wall thickness. Von Karman used the
mode shape data taken from the Donnell experiment to prove his
point and suggested that states of equilibrium could exist at
loads lower than classical.

During the early periods of research for cylindrical shells
under axial load, a single path to shell collapse (limit or bi-
furcation point) was accepted. Postbuckling studies indicated a
dramatic decrease in the load-carrying abllity occurs at the
bifurcation polnt and the cylinder undergoes a dramatic collapse.
Figure 1 1llustrates Donnell and Wan's results98 for an imperfect
cylinder under axial compression., For many cases where cylinders
of differing thinness ratios (R/t) were tested, the normalized
load-deflection curve of the shell (in terms of the classical
load A*¥ and strain Ecl) essentially follows a linear curve until
some limit point (p) 1s reached, and then the shell snaps into a
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postbuckled state. As the magnlitude of the imperfection 1s

increased (in terms of an uneveness factor, U), a marked
reduction in the maximum load-carrying capacity of the shell 1is
experlenced. The imperfection can become so large that no snap-
like behavior 1is experienced and the shell simply has an increas-
ing nonlinear behavior with load, as indicated by the curve for
UR/t = 0.4. The variation of the load-carrying capacity is much
less sensitive to imperfectlons in the postbuckled reglons.
However, the theory of Donnell and Wan does predict that as the
thinness ratio of the shell 1s increased, greater imperfection
sensitivity 1s experlenced.

When a cylindrical shell is in a pure membrane state, the
amount of energy stored in the shell can be quite large without a
great deal of deformation. If the shell is 1n pure axial com-
pression prior to buckling, the shell can fail (buckle) by devel-
oping a rapid exchange of energy from the membrane to the bending
state. This 1s usually accompanied by a large amount of defor-
mation. Prebuckling deformations due to imperfections cannot
generally be seen by the naked eye, and yet they have a pro-
nounced effect on the load-carrying capacity of the shell. These
deformations, correctly accounted for by Donnell and Wan, result
from nonlinear considerations. In the nonlinear case, Eq. (4)
takes the form:

b C — -
DvV'w + EE (v,e + w + VRu,x) = Nx (w,xx + w,xx) (5)
+ other nonlinear terms
where
v + w
- 1 .2 (] 1l .2
N, = C[u,x + 3 Bx) + v(—*;-— + 3 Be)]

With the success of the predicted behavior of a cylindrical
shell subjected to an axlal load, other attempts were made to
examine the cylindrical shell subJected to other membrane states
such as torsion (T) and hydrostatic pressure (p). The cylinder
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exhibited imperfection sensitivity for these loading conditions,
but to a lesser degree than under axial load (P), especilally in
the postbuckled region as shown in Figure 2 in terms of axial
displacement (D), twist, ¢, and radial displacement WR’
respectively.

The radial displacement satisfying one solution of the
nonlinear equation can be expressed in terms of a double Fourier
serles:

A,, cos 1 X cos § XL (6)
ij R.X R.y

=

it
e 8
Chp~— 8

The number of arbltrary parameters AiJ used in representing the
postbuckled displacement pattern will dictate what minimum
bifurcation load one can predict. The quantities lx and zy are
the half wave lengths of the buckles in the axial and circumfer-
ential directions. The 1initial postbuckling state 1s represented
by a checkerboard pattern (Flgure 3), with A being the load para-
meter and § being the axial deflection. When internal pressure
Is considered, the solution can be greatly altered such that the
final postbuckled state could be either diamond shaped (for low
internal pressure) or ring shaped (for high internal pressure).
Thus, three possible postbuckling patterns are possible at the
critical limit point.

From these extremes in static behavior of shells when sub-
Jected to a compressive state, the concept of a classical bifur-
cation buckling can be developed. At any load parameter, A,
below the lowest bifurcation load, the total energy of the system
Is lncreasing for any small perturbed load. If generalized co-
ordinates Qg and qj are selected such that they correspond to
non-critical principal coordlnates, then a test of the distinct
critical paths can be made. When the energy 1s increasing with
respect to any generalized coordinate, the shell is stable. This
can be represented as though a ball is resting in a cup (Point A,
Pigure 4). As the state of stress approaches infinitesimally
closer to the bifurcation load, a state of neutral equilibrium is
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Firure 4, Fquilibrium paths with stability loss
at branch points.
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reached. Here, the energy 1is condltionally stable to some
perturbed load and may be neutrally stable to a particular

load. To determine the stability characteristics of the shell
beyond this point, the energy must be traced for that perturbed
load. This action is as though the ball were resting in a trough
(Point B). Eventually any further increase in load will reach a
peak (Point C) and ultimate collapse 1s reached.

When the generalized coordinate corresponds to the critical
principal coordinate, postbuckling paths are possible (see
Figures 5a-5c¢). The bifurcation process was considered to be a
change from one equilibrium state of stress (path I) to an
adjacent state of equilibrium (path II). When the critical
classical buckling load (denoted as A*) 1s reached, infinitesimal
adjacent states of equilibrium at the same load could exist.

The nonlinear postbuckling response of a totally enclosed
liner or o0il casing 1is represented in Figure 5a. The system 1s
stable for one direction of motion and unstable 1in the opposite,
thus unsymmetric postbuckling properties are possible, The
response of a cylindrical shell subjected to axial compression or
a spherical shell subjected to external pressure 1s represented
by Figure 5b. The postbuckling behavior of a flat plate 1is
represented by Figure 5c¢. For each case considered, the dotted
line represents the behavior of an imperfect shell.

To determine the classical load A¥, usually a set of ordin-
ary differential equations are written and an eigenvalue of the
system of equation is determined. The governing equatlons are
derived from either equilibrium methods, energy methods, or im-
perfection methods.

Equilibrium methods can be used to examine the governing
equations for a structure. Then, adjacent equilibrium states are
hypothesized that satisfy the equations of equilibrium and the
boundary condlitions. These may be easlly prescribed for simple
systemms such as columns but may be impossible to describe for
complex shell structures.
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For energy methods, a deformation state 1is assumed to exist

that satisfies the boundary conditions and continuity. By taking
the variation of the potential energy with thlis assumed state and
setting the results to zero, a condition of equilibrium is
obtained. A load factor (elgenvalue) is determined when the
second variation of the potentlial energy ceases to be positive
definite.

Imperfection methods can be used to develop the equation of
equilibrium for a system with imperfections. Eccentricity of
load caused by the imperfectlion 1is examined, and a solution is
obtained. The asymptotic character of the solution (usually
radial displacement) is determined. When the deflections of the
structure increase without bound for a relatively small increase
in applied load, a load parameter is then sald to be determined.

2.2 Semi-Empirical Methods
The fundamental approach or philosophy behind the employment
of semi-empirical methods appears to be, 1in 1itself, quite

straightforward. The classical buckling prediction for an ideal-

ized shell under 1dealized loads without the influence of bound-
ary conditions can generally be easlly determined. For example,
the critical stress for the axially loaded cylinder can be

expressed as:

o = T Et/R (7)
cr

= 1.0/|f3(1-v7)

= 0.605 for v = 0.3

where

Ql

or

Q|

The quantity T 1s replaced by some functional quantity called a

knockdown factor that accounts for a proper fit of all of the
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accepted experimental data. For example, Welngarten, et a1.319
suggests the relation:

C = 0.606 - 0.546(1 - e ) (8) ‘

-YR/t
16
and shows that the above equation fits the lower bound of all the «
accepted data from fourteen different sources. The adequ~cy of ‘
the semi-empirical method 1s necessarily based upon a great deal
of experimental data as well as some correlation of this data to

a specific formula.

In 1957, Gerard and Becker'%’llz"117 complled a handbook of
structural stabllity for NACA. Criterla were set for flat
plates, shells, stiffeners, etc., which were based upon linear
energy methods supplemented by semi-empirical theory. Batdorf's

simplified methods38-42

were used extensively in Gerard's compar-
ison.

In 1968, under contract from NASA, Baker, et al.3! collected
various analysls procedures for shell structures encountered in
the aerospace industry. Chapter 3 of thls shell analysis manual
cataloged a varilety of stabllity criteria that was based upon the
concept of semi-empirical methods. This work was later condensed
and published by the original authors32. Similar collections
were made by other organizations in the aerospace and energy
fields. Unfortunately, much of this data was considered proprie-
tary to the supporting organization.

With all of the complex problems assoclated with the deter-
mination of a stability criteria for stiffened and unstiffened
shell structures, no single criterion can be used. Bounds on the

- w—_——
I N

'

[

-

-
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; application of the criteria need to be established. This was

i done to some extent by Baker, but it 1is not complete. An attempt
ﬁj to collect and computerlze a semi-empirical stability criteria
C- was made by ClterleySl. Criteria from Baker3!, Smith and

:!; Spier278 and lL.akshmikantham and Gerard187 was used. The only

Eﬁ conslideration of imperfection sensitivity was through a correla-
Ei: ttlon factor. Usually the knockdown factor, C of Eq. (8), would
:.::
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incorporate this additional factor (yC). For example, the factor

Y, given as:

y =1 - 0.901(1l-e
is suggested for curved isotropic panels. Buchert60 applies the
same basic 1dea to spherical, cylindrical shell-1like structures
and reticulated shell-like structures with positive and negative
Gausslian curvature. Formulas are suggested that appear to have
the same form as the classical critical stress prediction but
considers an imperfection parameter, A, that includes not only
the imperfect shape but also the deformation of the shell Jjust
prior to buckling. For example, the critical buckling stress for
a spherical shell subjected to any loading 1s given by Eq. (7)

where,
C = - 0.54 £ _ 0,145 H + {1.09 (t’f—)2 - 0.03 & gt/ (10)
m m m
’8.3,1/2
+ 0.359 (E_) }
m
o= [9.9 (& )2 + 3.08 ( B)3,1/72
m m
tm = effective membrane thickness
tB = effectlve bending thlckness

The cautions 1n adopting the knockdown factor concept are that
one 1s willing to (1) accept the Judgment of the original author
as to what 1is credible data and (2) assure that the boundary
conditlions, loading and shell configurations are comparable.
M111er295-207 pas collected a great deal of information

1s51ing empirical data and was the principal behind the criteria
suggested for Code Case N-284 (Metal Containment Shell Buckling
Methods) of the ASME.
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At the same time that semi-empirical efforts were belng
advanced, more experimental results became avallable, Instead of
establishing the precise behavior of shells, more questions were
being raised. The effects of the testing machine compliance,
probable boundary conditions and, in fact, even the buckled
shape, were questioned. Yoshimura33u’335 showed that the cylin-~
drical shell could be developed from a series of plane trilangles,
and thus the shell could buckle into a lower energy state (i.e.,
bending or folding along the intersection of the triangles). A
crude mathematical development of the postbuckled state corres-
ponds to the assumed three-term descrlption suggested by von
Karman. Ponsford®37 demonstrated that the buckled pattern was
dynamic and could not be maintained even under controlled static
loads. Almroth3 found that by 1ncreasing the number of terms
from 3 to 14, in representing the radial displacement and the

initial imperfections, the value of the postbuckling load for the
cylinder would decrease.

Further discussion of Donnell's approach was presented by
Hoffl33’13u who 1illustrated that by evaluating over 1100 terms of
the total potential energy, that in the 1limit the magnitude of
the radial displacement had a significant effect on predicting

:j the lower bound for the postbuckling state and that the Yoshimura
:: pattern could be approached. This latter finding put a virtual
o]

20 end to the search of what was then the popular method of estab-

i

lishing a lower bound in the critical load through linear energy

AT

methods.

The effects of boundary conditions has also been
reviewed13u’135’137’255’261’962’298. Ohira225, Nachbar and

Hoff215, Sobe1279, and Almro.r.® also discussed the problem of

MAAARAADE

A

:% boundary conditions. Almroth developed relationships between the 1
&; length of the shell and edge restralnts for eight possible bound-
iﬁ ary conditions that could exist.
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2.3 Geometric Nonlinear Theorles

Continued research 1n the adaptation of von Karman's nonlin-
191

Eud

a3

e ey

ear shell theory was made by Leggett and Jones and by

SO Michielsen203. Unfortunately, little information has been pub-
lished on the nonlinear methods. Chien78 presented one theory
that was later criticized by Goldenvelzer and Lur-'ye119 and

N Re1s3239. The major complaint was that Chien's development could
not handle displacement boundary conditions correctly.
Reissner2u1 developed finite displacement equations of equilib-

«
ace, e,

'\ N
N@ rium for the axisymmetric response of a shell of revolution.

J’i

L This investlgatlon was far-reachling inasmuch as the extension of
e linear methods had been shown.

The development of the nonlinear equations of equilibrium

[ )
{ﬁ for general shells has had less intense study than the linear
2 set. From a general point of view, the discussion of Zer'na336

3 gives the most complete theory on the nonlinear bhehavior.
( Naghd1217 has also presented a nonlinear theory. Perhaps the

N most commonly accepted theory 1s that of Sanderszsu, which 1is

_:; limited to small strains and moderately small rotations.

23 Reissner‘242 developed a system of nonlinear differential equa-
¥ tions for the symmetric deformation of shells permitting large
rotations and finlte strains. Danielson95 developed the bifur-
cation and postbuckling equations using asymmetric expansion

: techniques from an energy criterion. Yokoo and Matsunaga332

‘ Jerived a fundamental set of two~dimensional shell equations.
The structures under investigation were made of rather simple
geometric forms, although some investigation was made of compos-

ite vessels, such as the joining of cylinders and hemispherical
127
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